Galileo Galilei


Galileo Galilei dilahirkan di Pisa, Tuscany, Italia, pada tanggal 15 Februari 1564. Sebagai seorang matematikawan, ayahnya berharap Galileo menjadi seorang dokter gaji dokter sangat besar dibandingkan dengan matematikawan. Mengikuti kehendak ayahnya, Galileo masuk jurusan kedokteran, Universitas Pisa. Karena merasa bosan dengan ilmu kedokteran, Galileo mempelajari matematika pada seorang guru di istana Tuscana, yakni Ostillo Ricci. Ketika berusia 21 tahun, Galileo berhenti kuliah karena kekurangan biaya. Ketika keluar, ia ditawarkan untuk mengajar matematika pada Universitas Pisa. Selanjutnya, Galileo pindah ke Universitas Padua tahun 1592 untuk mengajar astronomi, geometri dan mekanika sampai tahun 1960. pada massa ini ia menghasilkan beberapa penemuan penting.

Sumbangan penting Galileo berkaitan dengan bidang mekanika. Pada waktu itu berkembang gagasan Aristoteles yang menyatakan bahwa benda yang lebih berat jatuh lebih cepat dibandingkan dengan benda yang lebih ringan. Galileo memutuskan untuk melakukan percobaan dengan menjatuhkan berbagai benda yang berbeda ukuran maupun massanya dari menara pisa (Italia). Hasil percobaannya menunjukan bahwa gagasan Aristoteles salah. Selengkapnya dapat anda pelejari pada pokok bahasan Gerak Jatuh Bebas. Penemuan Galileo lainnya adalah Hukum Kelembaman. Sebelumnya orang percaya bahwa benda yang bergerak cenderung melambat dan akhirnya berhenti jika tidak ada tenaga yang memberikan kekuatan kepada benda tersebut untuk bergerak. Percobaan-percobaan yang dilakukan oleh Galileo membuktikan bahwa gagasan tersebuut keliru. Jika gaya gesek yang menjadi penyebab benda yang bergerak melambat dan akhirnya berhenti, dihilangkan, maka benda cenderung bergerak lurus dengan laju tetap. Selain gagasan Aristoteles di atas, pemikiran Galileo ini menjadi salah satu dasar perumusan Hukum Newton tentang gerak.

Penemuan Galileo yang terkenal lainnya adalah pada bidang astronomi. Pada waktu itu ilmu astronomi sedang berada dalam masa peralihan, dari anggapan lama yang mengatakan bahwa bumi sebagai pusat tata surya menuju gagasan bahwa pusat tata surya adalah matahari. Gagasan ii dikemukan oleh copernicus, yang kemudian disempurnakan oleh Kepler. Selengkapnya dapat anda pelajari pada Hukum Kepler. Galileo mendengar bahwa telah ditemukan teleskop di Belanda. Karena didorong oleh kehendak yang kuat untuk membuktikan kebenaran gagasan Copernicus, Galileo menyempurnakan teleskop dan menjadi orang pertama yang mengamati langit menggunakan teleskop. Sekitar tahun 1609, Galileo menyatakan bahwa gagasan Copernicus benar. Karena mendukung gagasan copernicus, maka pihak gereja katolik mengecam gagasan galileo mengenai pergerakan bumi dan melarangnya mendukung gagasan copernicus. Gereja sempat memberikan hukuman tahanan rumah kepada Galileo. Galileo meninggal dunia pada tahun 1642.

Sumbangan yang sangat penting dari Galileo bagi perkembangan ilmu pengetahuan adalah metodologi ilmu pengetahuan. Galileo menetapkan fenomena dan melakukan pengamatan secara kuantitatif. Penetapan yang cermat terhadap perhitungan secara kuantitatif sejak saat itu menjadi dasar penyelidikan ilmu pengetahuan hingga saat ini.

Pada tahun 1612, muncul penolakan terhadap teori Copernicus, sebuah yang mengatakan bahwa matahari sebagai pusat tata surya. Teori tersebut didukung juga oleh Galileo. Pihak gereja melarangnya mendukung dan mengajar teori Copernicus.
Baca Selengkapnya...

Prof. Abdus Salam


Abdus Salam dilahirkan di Jhang, Lahore, Pakistan, tanggal 29 Januari 1926. Setelah menamatkan Program sarjana di Universitas Punjab, ia melanjurkan studinya ke St. John’s College, Inggris dan berhasil meraih gelar BA untuk bidang matematika dan fisika pada 1949. Pada usia 26 tahun, ia menerima gelar PhD untuk fisika teori dari universitas Cambridge dengan predikat summa cumlaude.

Setelah menyelesaikan studinya, Salam memutuskan untuk pulang ke negerinya karena dipanggil oleh pemerintah Pakistan walaupun ia mendapatkan banyak tawaran untuk mengajar dan menjadi peneliti di almamaternya. Pemerintah Pakistan lalu mengangkat ia sebagai Profesor di Government College, Lahore dan ia juga diangkat sebagai Kepala Departemen Matematika Universitas Punjab. Satu kendala yang dihadapi Salam di negerinya adalah tidak adanya budaya riset dan ia juga tidak mendapat dukungan yang baik. Pemimpinnya bahkan pernah menyarankan agar ia melupakan penelitiannya.

Akhirnya Abdus Salam memilih untuk kembali ke Inggris dan menjadi Professor di Imperial College. Imperial College adalah sebuah Universitas yang sangat terkenal di Inggris. Sejak saat itu, berbagai hasil penelitian dan buah pemikirannya selalu mendapat penghargaan. Salam dipercaya sebagai sekretaris jenderal bidang sains untuk konferensi penggunaan damai energi atom (1955 dan 1958), serta pimpinan komisi enasehat bidang sains dan teknologi (1971-72) di PBB. Selama tiga tahun, ia juga diangkat menjadi penasihat presiden Pakistan, Ayub Khan, untuk menangani perkembangan Iptek di Negerinya. Ia akhirnya mengundurkan diri dari Pemerintahan setelah Ali Bhutto menjadi Perdana Menteri.

Pada tahun 1976, Abdus Salam mendapat penghargaan Nobel Fisika di Karolinska Institute Swedia dan namanya pun tercatat dalam perkembangan ilmu fisika dunia. Ia bersama Steven Weinberg dan Sheldon Glashow dianugerahi Nobel Fisika karena sumbangannya dalam menyatukan gaya elektromagnetik dan gaya nuklir lemah. Teori yang dinamakan elektrolemah (electroweak) menjadi suatu pijakan pengembangan teori penyatuan maha agung (grand unification theory) yang berusaha menyatukan kedua gaya ini dengan gaya inti (gaya kuat). Sekarang teori yang dikembangkan Abdus Salam ini menjadi inti penting dalam pengembangan model standar (stardard model) fisika partikel. Teori Abdus Salam ini telah dibuktikan secara ilmiah melalui eksperimen pada tahun 1983, yang dilakukan oleh Tim dari CERN (Centre European the Recherche Nucleaire) di Jenewa, Swiss, yang dipimpin oleh Carlo Rubia.

Selama hidupnya, Abdus Salam pernah mendapat 39 gelar Doktor Honoris Causa dari berbagai universitas ternama di seluruh dunia. Ia juga dinobatkan menjadi anggota kehormatan Akademi Ilmu Pengetahuan Nasional di lebih dari 30 negara serta 35 organisasi profesi ilmiah. Salam juga memperoleh tujuh penghargaan atas kontribusinya untuk mengkampanyekan perdamaian serta kerja sama ilmu pengetahuan internasional.

Menjadi ilmuwan yang sangat terkenal tidak membuat Salam lupa diri. ia juga berupaya agar orang-orang yang berasal dari dunia ketiga tidak kehilangan kesempatan menjadi ilmuwan kelas dunia. Ia pun mendirikan ICPT (International Center for Theoritical Physics) di Trieste, Italia,bersama teman-temannya di Eropa dan Amerika, serta atas bantuan PBB, khususnya Lembaga Energi Atom Internasional. Pusat Fisika Teoritis yang didirikannya merupakan sumbangan yang berarti bagi komunitas fisikawan dunia. Perhatiannya yang besar terhadap perkembangan Ilmu Pengetahuan di dunia ketiga mendorongnya untuk mendirikan Akademi Sains Dunia Ketiga dan jaringan organisasi sains dunia ketiga.

Prof. Abdus Salam meninggal dunia di Oxford, Inggris pada hari kamis, tanggal 21 november 1996 pada usia 70 tahun.

Terima kasih prof, atas sumbangannya yang berarti bagi perkembangan ilmu fisika dan perkembangan ilmu pengetahuan di dunia ketiga.

Ayo, siapa yang berikutnya ? dirimu-kah ?
Baca Selengkapnya...

Prof. Daniel Chee Tsui


Daniel Chee Tsui lahir pada tanggal 28 Februari 1939 di sebuah desa kecil, Provinsi Henan, China. Ayah dan ibunya buta huruf dan mereka juga tinggal di desa yang selalu dilanda bencana banjir, kekeringan dan perang. Walaupun buta huruf, ayahnya sangat ingin Tsui sukses, sehingga pada tahun 1951 ayahnya mengirim Tsui ke Hongkong. Setelah lulus sekolah dasar, Tsui melanjutkan ke sekolah menengah Pui Ching, Kowloon, Hongkong, sebuah sekolah menengah yang sangat terkenal di Hongkong.

Setelah lulus sekolah menengah pada tahun 1957, Tsui pindah ke Amerika Serikat pada tahun 1958 karena menerima beasiswa dari Augustana College, Rock Island, Illinois. Setelah Lulus dari Augustana College, Tsui melanjutkan kuliahnya ke University of Chicago, kampus di mana Chen Ning Yang dan Tsung Dao Lee, fisikawan China peraih nobel berada. Tsui memperoleh gelar doktor pada tahun 1968.

Setelah menyelesaikan studinya, Tsui bekerja di Bell Laboratories, New Jersey sebagai peneliti dalam bidang fisika zat padat. Ia adalah perintis dalam studi elektron dua dimensi. Bekerja sama dengan Horst Stormer, Tsui mengembangkan material baru dimana elektron dapat bergerak dipermukaannya tanpa gesekan. Penemuannya ini kini digunakan untuk pembuatan chip-chip komputer yang merupakan peralatan utama untuk era high-tech ini. Penemuannya pada efek hall kuantum fraksional tersebut mengantarnya untuk memperoleh Hadiah Nobel Fisika pada tahun 1998, bersama dengan Robert Laughin dari Stanford University dan Horst Stormer dari Columbia University.

Pada tahun 1982 ia diangkat menjadi profesor teknik elektro pada Princeton University. Walaupun telah menjadi fisikawan yang sangat terkenal, Prof. Tsui masih berkeinginan untuk mengajar. Salah satu mahasiswa Indonesia yang saat ini dibimbingnya adalah Oki Gunawan, peraih medali perunggu Olimpiade Fisika Internasional tahun 1993.

Miskin tidak berarti tidak bisa sukses khan ?
Baca Selengkapnya...

Entropi (Pernyataan umum hukum kedua termodinamika)

Pengantar

Dalam postingan sebelumnya kita sudah mempelajari beberapa pernyataan khusus hukum kedua termodinamika. Perlu diketahui bahwa pernyataan khusus tersebut hanya bisa menjelaskan beberapa proses ireversibel saja. Pernyataan om Clausius hanya menjelaskan perpindahan kalor dan kaitannya dengan prinsip kerja mesin pendingin. Sebaliknya pernyataan om Kelvin dan om Planck berkaitan dengan prinsip kerja mesin kalor. Walaupun tampaknya berbeda, tetapi pada dasarnya kedua pernyataan ini berhubungan dengan perpindahan kalor. Btw, masih banyak proses ireversibel lainnya tidak bisa dijelaskan menggunakan kedua pernyataan tersebut. Setelah mencium tanah, buah mangga yang lezat dan mengundang selera tidak pernah meluncur ke atas lagi. Buku yang kita dorong tidak pernah bergerak kembali ke posisinya semula. Ketika adikmu yang sangat nakal menjatuhkan gelas ke lantai hingga pecah, serpihan-serpihan gelas yang tercecer di lantai tidak pernah ngumpul lagi dan membentuk gelas hingga utuh seperti semula… Apalagi ya… masih banyak atuh. mikirin sendiri ya… hiks2… pisss…



Karena pernyataan khusus hukum kedua termodinamika tidak bisa menjelaskan semua proses ireversibel maka kita membutuhkan pernyataan yang lebih umum. Adanya pernyataan umum ini diharapkan bisa menjelaskan semua proses ireversibel yang terjadi di alam semesta. Pernyataan umum hukum kedua termodinamika baru dirumuskan pada pertengahan abad kesembilan belas, melalui sebuah besaran yang diberi julukan entropi (S). Entropi bisa dianggap sebagai ukuran kuantitatif dari ketidakteraturan. Mengenai hal ini akan dibahas kemudian… Besaran entropi pertama kali diperkenalkan oleh om Clausius dan diturunkan dari siklus om Carnot (mesin kalor sempurna). Menurut om Clausius, besarnya perubahan entropi yang dialami oleh suatu sistem, ketika sistem tersebut mendapat tambahan kalor (Q) pada suhu tetap dinyatakan melalui persamaan di bawah :





Keterangan :
Delta S = Perubahan entropi (Joule/Kelvin)
Q = Kalor (Joule)
T = Suhu (Kelvin)

Entropi merupakan besaran yang menyatakan keadaan mikroskopis sistem, karenanya tidak bisa diketahui secara langsung. Yang kita tinjau hanya perubahan entropi saja… Mirip seperti perubahan energi dalam pada hukum pertama termodinamika.
Untuk membantumu lebih memahami pembahasan ini, kita obok-obok latihan soal saja :

Contoh soal 1 :
Sejumlah gas dalam sebuah wadah mengalami pemuaian adiabatik. Berapakah perubahan entropi gas tersebut ?
Panduan juawaban :
Selama proses adiabatik, tidak ada kalor yang masuk atau keluar sistem (gas). Karena Q = 0 maka delta S = 0. Bisa disimpulkan bahwa pada proses pemuaian adiabatik, entropi sistem tidak berubah alias selalu konstan…
Bagaimanakah dengan penekanan adiabatik ? Pada dasarnya sama saja. Selama penekanan adiabatik, tidak ada kalor yang masuk atau keluar dari sistem (Q = 0). Karenanya entropi sistem tidak berubah alias selalu konstan.

Contoh soal 2 :
Sebuah mesin Carnot menerima 2000 J kalor pada suhu 500 K, melakukan kerja dan membuang sejumlah kalor pada suhu 350 K. Tentukan jumlah kalor yang terbuang dan perubahan entropi total dalam mesin selama satu siklus…
Panduan jawaban :
TH = 500 K
QH = 2000 J
TL = 350 K
QL = ?



Persamaan ini datangnya dari mana-kah ? ingat pembahasan mengenai mesin carnot. Hasil yang sangat penting dari mesin Carnot adalah bahwa untuk mesin kalor yang sempurna, Kalor yang diterima (QH) sebanding dengan suhu TH dan Kalor yang dibuang (QL) sebanding dengan suhu TL. Pahami perlahan-lahan…



Ingat perjanjian tanda hukum pertama terModiNamikA. Jika sistem menerima kalor, Q bertanda positif. Sebaliknya jika sistem melepaskan kalor, Q bertanda negatif. Sistem untuk kasus ini adalah mesin carnot…




Selama satu siklus, mesin Carnot (mesin kalor sempurna) mengalami dua proses isotermal reversibel (pemuaian isotermal + penekanan isotermal) dan dua proses adiabatik reversibel (pemuaian adiabatik dan penekanan adiabatik). Selama proses pemuaian dan penekanan adiabatik, tidak ada kalor yang masuk atau keluar dari sistem (Q = 0). Karena Q = 0 maka perubahan entropi selama proses adiabatik = 0…
Selama pemuaian isotermal, mesin menyedot kalor (Q) sebanyak 2000 J pada suhu (T) 500 K. Karena mesin menyedot kalor maka Q bertanda positif. Perubahan entropi mesin selama pemuaian isotermal adalah :




Selama penekanan isotermal, mesin membuang kalor (Q) sebanyak 1400 J pada suhu (T) 350 K. Karena mesin membuang kalor maka Q bertanda negatif.
Perubahan entropi mesin selama penekanan isotermal adalah :




Perubahan entropi total = 4 J/K – 4 J/K = 0
Contoh soal 3 :
Sebuah mesin kalor menerima kalor (Q) sebanyak 600 Joule pada suhu 300 oC, melakukan kerja dan membuang sejumlah kalor pada suhu 100 oC. Tentukan jumlah kalor yang terbuang dan perubahan entropi total dalam mesin selama satu siklus…
Panduan jawaban :
TH = 300 K
QH = 600 J
TL = 100 K
QL = ?



Selama satu siklus, mesin Carnot (mesin kalor sempurna) mengalami dua proses isotermal reversibel (pemuaian isotermal + penekanan isotermal) dan dua proses adiabatik reversibel (pemuaian adiabatik dan penekanan adiabatik). Selama proses pemuaian dan penekanan adiabatik, tidak ada kalor yang masuk atau keluar dari sistem (Q = 0). Karena Q = 0 maka perubahan entropi selama proses adiabatik = 0…
Selama pemuaian isotermal, mesin menyedot kalor (Q) sebanyak 600 J pada suhu (T) 300 K. Karena mesin menyedot kalor maka Q bertanda positif. Perubahan entropi mesin selama pemuaian isotermal adalah :



Selama penekanan isotermal, mesin membuang kalor (Q) sebanyak 200 J pada suhu (T) 100 K. Karena mesin membuang kalor maka Q bertanda negatif.
Perubahan entropi mesin selama penekanan isotermal adalah :






Perubahan entropi total = 2 J/K – 2 J/K = 0
Dari contoh soal nomor 2 dan contoh soal nomor 3, tampak bahwa perubahan entropi total untuk proses reversibel = 0. Dengan kata lain, pada proses reversibel, entropi total selalu konstan…

Contoh soal 4 :
Sebongkah es batu bermassa 2 kg memiliki suhu 0 oC. Es batu tersebut diletakkan di dalam sebuah wadah dan dijemur di bawah sinar matahari. Karena mendapat sumbangan kalor dari udara dan matahari maka si es batu pun mencair… tentukan perubahan entropi es batu tersebut… (Kalor lebur air = 3,34 x 105 J/Kg)
Panduan juawaban :
Massa es batu = 2 kg
Suhu es batu = 0 oC + 273 = 273 K
Kalor lebur air = 3,34 x 105 J/Kg
Kalor yang diperlukan untuk meleburkan 2 kg es batu menjadi air adalah :
Q = mL
Q = (2 Kg)(3,34 x 105 J/Kg)
Q = 6,68 x 105 J
Q = 668 x 103 J
Ingat ya, selama proses peleburan (es batu berubah menjadi air), suhu selalu konstan. Karena suhu selalu konstan maka perubahan entropi es batu dihitung dengan suangat guampang :



Entropi es batu bertambah sebanyak 2,45 x 103 J/K. Perhatikan bahwa entropi lingkungan (wadah, udara, etc) tidak kita hitung…
Perhitungan di atas tampaknya mudah karena suhu air konstan. Apabila suhu tidak konstan maka perhitungannya menjadi lebih beribet Seandainya perubahan suhu cukup besar maka perubahan entropi bisa diooprek menggunakan kalkulus. Sebaliknya jika perubahan suhu tidak terlalu besar, kita bisa menggunakan suhu rata-rata (lihat contoh soal 5).

Contoh soal 5 :
Segelas air bersuhu 26 oC dicampur dengan segelas air yang bersuhu 22 oC. Jika massa air dalam gelas = 2 kg (gelas raksasa ), tentukan perubahan entropi air… Anggap saja air dicampur dalam sistem tertutup yang terisolasi. Ingat ya, perpindahan kalor alias panas termasuk proses ireversibel…
Panduan jawaban :
Kalor jenis air (c) = 4180 J/Kg Co
Massa air = 2 Kg (massa air sama).
Karena massa air sama, maka suhu akhir campuran = 24 oC (26 oC + 22 oC / 2 = 48 oC / 2 = 24 oC).
Jumlah kalor yang dilepaskan oleh air panas ketika suhunya menurun dari 26 oC – 24 oC :
Q = mc(delta T) = (2 Kg)(1 kkal/kg Co)(26 oC – 24 oC) = (2 Kg)(4180 J/kg Co)(2 oC) = 16720 J
Jumlah kalor yang disedot oleh air dingin ketika suhunya meningkat dari 22 oC – 24 oC :
Q = mc(delta T) = (2 Kg)(1 kkal/kg Co)(24 oC – 22 oC) = (2 Kg)(4180 J/kg Co)(2 oC) = 16720 J
Perubahan entropi total = Perubahan entropi air panas + perubahan entropi air dingin



Suhu rata-rata air panas = (26 oC + 24 oC) / 2 = 50 oC / 2 = 25 oC —- 25 + 273 = 298 K
Suhu rata-rata air dingin = (22 oC + 24 oC) / 2 = 46 oC / 2 = 23 oC —- 23 + 273 = 296 K
Air panas melepaskan kalor, karenanya Q bertanda negatif. Sebaliknya air dingin menyedot kalor, karenanya Q bertanda positif. Ingat lagi perjanjian tanda Q (hukum pertama termodinamika)



Entropi air panas menurun sebesar 56,107 J/K



Entropi air dingin bertambah sebesar 56,486 J/K



Entropi total bertambah sebesar 0,379 J/K

Dari hasil pengoprekan ini, tampak bahwa walaupun entropi sebagian sistem berkurang (-56,107 J/K), entropi sebagian sistem bertambah dalam jumlah yang lebih besar (+ 56,486 J/K) sehingga entropi total selalu bertambah (+ 0,379 J/K). Bertambahnya entropi total sistem tertutup yang terisolasi akibat adanya proses ireversibel ternyata tidak hanya berlaku pada perpindahan kalor antara campuran air panas dan air dingin yang kita analisis di atas, tetapi berlaku juga untuk semua kasus yang diteliti oleh para ilmuwan. Jadi entropi total suatu sistem tertutup yang terisolasi hanya bisa tetap atau bertambah, tetapi tidak pernah berkurang… Entropi total selalu tetap jika proses terjadi secara reversibel. Apabila proses terjadi secara ireversibel maka entropi total selalu bertambah…
Pada dasarnya semua proses alamiah dalam kehidupan kita setiap hari bersifat ireversibel sehingga entropi total pasti bertambah. Kenyataan ini disimpulkan dalam sebaris kalimat gaul di bawah :
Entropi total sistem dan lingkungan selalu bertambah akibat adanya proses ireversibel.
Kalimat yang dicetak miring ini merupakan pernyataan umum hukum kedua termodinamika. Hukum kedua termodinamika agak berbeda dengan hukum-hukum fisika lainnya… Biasanya hukum fisika dinyatakan dalam bentuk persamaan (misalnya hukum kakek Newton) atau berupa hukum kekekalan (misalnya hukum kekekalan energi). Hukum kedua termodinamika hanya dinyatakan dalam sebaris kalimat yang bikin mumet. Sialnya lagi, hukum kedua malah mengatakan kepada kita bahwa entropi selalu bertambah. Pada dasarnya proses ireversibel terjadi setiap saat, karenanya entropi juga selalu bertambah seiring berlalunya waktu. Kalau entropi selalu bertambah seiring berlalunya waktu berarti suatu saat nanti entropi akan bernilai maksimum dunk. Wah, apa jadinya dunia nanti
Btw, entropi tuh sebenarnya apa sich ? Dari tadi bahas entropi melulu tapi gak ngerti2 entropi tuh artinya apa… hiks2… Dari pada pusink seribu keliling lebih baik kita langsung menuju ke sasaran saja…
Entropi merupakan ukuran dari ketidakteraturan
Entropi dapat dianggap sebagai ukuran dari ketidakteraturan. Jika dikaitkan dengan pernyataan umum hukum kedua termodinamika, bisa dikatakan bahwa pada proses ireversibel, ketidakteraturan cenderung bertambah. Dengan kata lain, setiap proses ireversibel pada dasarnya menuju ke keadaan yang tidak teratur. Makna ketidakteraturan di sini mungkin kurang jelas, karenanya mr.ozan jelaskan menggunakan contoh proses ireversibel yang terjadi dalam kehidupan sehari. Sebelum melangkah lebih jauh, baca terlebih dahulu pesan-pesan berikut ini :
Perlu diketahui bahwa konsep entropi pada mulanya hanya dihubungkan dengan proses ireversibel yang berkaitan dengan perubahan bentuk energi dan perpindahan energi. Setelah terlepas dari tangkainya dan jatuh bebas hingga mencium tanah, buah mangga tidak pernah meluncur ke atas lagi. Buku yang kita dorong lalu berhenti tidak pernah bergerak kembali ke arah kita. Ini adalah beberapa contoh proses ireversibel yang berkaitan dengan perubahan bentuk energi dan perpindahan energi dari satu benda ke benda yang lain. Proses tersebut hanya berlangsung pada satu arah saja, tetapi tidak pernah berlangsung pada arah sebaliknya. Buah mangga tidak pernah meluncur ke atas dengan sendirinya karena energi dalam berubah menjadi energi kinetik. Buku tidak pernah meluncur ke arah kita karena kalor alias panas yang timbul akibat gesekan berubah menjadi energi kinetik.
Btw, proses ireversibel yang terjadi di alam semesta ternyata tidak hanya berkaitan dengan perubahan bentuk energi dan perpindahan energi. Setelah dilahirkan, kita bertumbuh menjadi bayi, anak-anak, remaja, dewasa lalu menjadi tua lapuk dan akhirnya mati dimakan cacing Apakah dirimu pernah melihat seorang tua berubah menjadi bayi ? tidak pernah… Handphone yang kita pakai lama kelamaan menjadi kusam dan rusak… Mobil baru yang pada mulanya licin dan bertenaga menjadi kurang licin dan lemas tak bertenaga setelah dirimu pakai selama beberapa tahun. Apakah dirimu pernah lihat mobil tua tiba-tiba saja menjadi baru lagi ? Atau Handphone kesayanganmu setiap hari semakin licin n bagus ? Tidak pernah… Setelah dipakai, handphone menjadi kusam dan rusak. Mobil juga demikian… Ini adalah beberapa contoh proses ireversibel yang tidak ada hubungannya dengan perubahan bentuk energi dan perpindahan energi…. Nah, setelah menyadari bahwa semua proses alamiah yang terjadi di alam semesta bersifat ireversibel maka konsep entropi menjadi meluas. Pembahasannya tidak hanya meliputi proses termodinamika saja tetapi mencakup banyak proses ireversibel lainnya di alam semesta…
Sekarang mari kita bahas beberapa proses ireversibel yang terjadi dalam kehidupan sehari-hari. Terlebih dahulu kita tinjau sebuah proses ireversibel sederhana berikut. Ini hanya pengantar saja, biar dirimu paham dengan konsep entropi serta kaitannya dengan proses ireversibel. Tataplah gambar di bawah dengan penuh semangat



Misalnya dirimu punya sejumlah kelereng berwarna merah dan biru. Kelereng tersebut dimasukkan ke dalam sebuah wadah. Kelereng yang berwarna biru disusun secara rapi di bagian dasar, sedangkan kelereng berwarna merah disusun secara rapi di bagian atas (gambar kiri). Susunan kelerengmu dalam wadah tampak sangat teratur… Sebelah bawahnya biru semua, sebelah atasnya merah semua… Selanjutnya dirimu mengocok atau mengguncangkan wadah naik turun. Karena wadah digerakkan naik turun maka susunan kelereng yang pada mulanya sangat teratur berubah menjadi tidak teratur lagi (gambar kanan). Kelereng berwarna merah dan biru campur aduk menjadi satu Semakin diguncang, susunan kelereng menjadi semakin tak teratur… Mungkin-kah setelah diguncang-guncang, susunan kelerengmu menjadi teratur seperti semula ? tidak mungkin terjadi… Silahkan dibuktikan kalau tidak percaya. Kelereng tidak mungkin menjadi teratur seperti semula… Ini merupakan sebuah contoh proses ireversibel alias tidak dapat balik. Setelah mengalami proses ireversibel, susunan kelereng yang pada mulanya sangat teratur berubah menjadi tidak teratur. Keteraturan telah berubah menjadi ketidakteraturan…
Hal yang sama terjadi pada proses ireversibel lainnya. Ketika kita menyentuhkan benda panas dan benda dingin, kalor akan mengalir dengan sendirinya dari benda panas menuju benda dingin… Kalor berhenti mengalir setelah kedua benda yang bersentuhan mencapai suhu yang sama. Proses ini bersifat ireversibel… Nah, pada mulanya kita mempunyai dua susunan molekul, yakni molekul yang mempunyai energi kinetik rata-rata yang besar (molekul-molekul penyusun benda panas) dan molekul yang mempunyai energi kinetik rata-rata yang kecil (molekul-molekul penyusun benda dingin). Setelah benda panas dan benda dingin mencapai suhu yang sama (molekul-molekul telah mempunyai energi kinetik rata-rata yang sama), dua susunan molekul tadi tidak bisa kita bedakan lagi. Susunan molekul-molekul yang pada mulanya teratur berubah menjadi tidak teratur. Mirip seperti susunan kelereng di atas… Setelah kedua benda mencapai suhu yang sama, keteraturan susunan molekul berubah menjadi ketidakteraturan (ketidakteraturan bertambah akibat adanya perpindahan kalor yang bersifat ireversibel).
Lebih jauh lagi, aliran kalor dari benda panas menuju benda dingin bisa dianggap seperti aliran kalor dari daerah bersuhu tinggi menuju daerah bersuhu rendah pada mesin kalor. Adanya aliran kalor dari daerah bersuhu tinggi menuju daerah bersuhu rendah membuat mesin kalor bisa melakukan kerja. Mesin kalor tidak bisa melakukan kerja apabila tidak ada aliran kalor. Dengan demikian, kita bisa membuat hubungan antara ukuran ketidakteraturan dengan kemampuan melakukan kerja. Setelah mencapai suhu yang sama, tidak ada lagi aliran kalor dari benda panas menuju benda dingin (ketidakteraturan bertambah). Karena tidak ada aliran kalor membuat mesin kalor tidak bekerja maka kita bisa mengatakan bahwa sistem yang tidak bisa melakukan kerja memiliki ketidakteraturan yang tinggi, sebaliknya sistem yang bisa melakukan kerja memiliki ketidakteraturan yang rendah…
Dari hasil ini, kita bisa membuat kesimpulan mengenai hubungan antara bentuk energi dengan ukuran ketidakteraturan. Pada dasarnya bentuk energi yang bisa digunakan untuk melakukan kerja adalah energi potensial. Energi potensial gravitasi air bisa digunakan untuk menggerakan turbin. Energi potensial kimia pada minyak bisa digunakan untuk menggerakan kendaraan. Energi potensial kimia dalam tubuh bisa kita gunakan untuk melakukan kerja, jalan-jalan, belajar… Energi potensial gravitasi buah mangga bisa digunakan untuk membocorkan atap rumah Karena bentuk energi yang berguna bisa digunakan untuk melakukan kerja maka kita bisa mengatakan bahwa bentuk energi yang berguna tersebut lebih teratur, sebaliknya bentuk energi yang tidak berguna lebih tidak teratur. Bentuk energi yang tidak berguna adalah energi dalam dan kalor alias panas… Setelah mencium tanah, buah mangga tidak pernah meluncur ke atas lagi karena energi dalam berubah menjadi energi kinetik… Setelah kita mendorong buku, buku tersebut bergerak. Adanya gaya gesekan membuat buku berhenti bergerak… Untuk kasus ini, energi kinetik buku telah berubah menjadi kalor alias panas (panas timbul akibat adanya gesekan). Nah, dalam kenyataannya buku yang sedang diam tidak meluncur kembali ke arah kita karena kalor alias panas berubah menjadi energi kinetik… Dua contoh ini menunjukkan bahwa kalor alias panas merupakan dua bentuk energi yang tidak berguna. Bentuk energi yang tidak berguna tidak bisa digunakan untuk melakukan kerja. Dengan demikian kita bisa mengatakan bahwa kalor alias panas dan energi dalam memiliki ketidakteraturan yang tinggi…
Pada dasarnya proses perubahan bentuk energi, dari bentuk energi yang berguna menjadi bentuk energi yang tidak berguna selalu menaikkan ketidakteraturan… Istilah gaulnya, entropi selalu bertambah selama proses perubahan bentuk energi… Karena entropi selalu bertambah seiring berlalunya waktu maka semua bentuk energi yang berguna tersebut akan berubah bentuk menjadi tidak berguna. Energi akan selalu kekal dalam proses perubahan bentuk energi, tetapi bentuk energi yang teratur dan bisa digunakan untuk melakukan kerja berubah bentuk menjadi tidak teratur dan tidak bisa digunakan untuk melakukan kerja…

Entropi dan statistik
Sebelumnya kita sudah membahas bahwa entropi merupakan ukuran dari ketidakteraturan. Setiap proses ireversibel pada dasarnya menuju ke keadaan yang memiliki ketidakteraturan yang tinggi. Btw, gagasan ini mungkin tampak abstrak dan tidak terlalu jelas. Untuk lebih memahami konsep entropi, kita bisa menggunakan pendekatan statistik. Pemahaman akan konsep entropi menggunakan pendekatan statistik pertama kali digunakan oleh om Ludwig Boltzmann (1844-1906).
Pada awal tulisan ini mr.ozan sudah menjelaskan bahwa entropi merupakan besaran yang menyatakan keadaan mikroskopis sistem. Besaran yang menyatakan keadaan makroskopis bisa diketahui secara langsung tetapi besaran yang menyatakan keadaan mikrokopis tidak bisa diketahui secara langsung. Untuk mengetahui keadaan mikroskopis, kita bisa meninjau keterkaitan antara keadaan makroskopis dan keadaan mikroskopis.
Punya uang receh seratus rupiah ? Uang receh seratus rupiah punya dua sisi, pada salah satu sisi terdapat gambar burung garuda dan sedangkan di sisi yang lain terdapat tulisan 100 rupiah. Nah, misalnya dirimu punya 4 uang receh seratus rupiah… kalau dirimu melempar keempat uang receh seratus rupiah di atas lantai, dalam sekali lemparan akan ada lima kemungkinan yang berbeda :
pertama, muncul gambar burung garuda semua (4 gambar);
kedua, muncul 3 gambar burung garuda, 1 tulisan seratus rupiah (3 gambar, 1 tulisan);
ketiga, muncul 2 gambar burung garuda, 2 tulisan seratus rupiah (2 gambar, 2 tulisan);
keempat, muncul 1 gambar burung garuda, 3 tulisan seratus rupiah (1 gambar, 3 tulisan);
kelima, muncul tulisan seratus rupiah semua (4 tulisan)…
Lima kemungkinan munculnya gambar atau tulisan ini kita sebut sebagai keadaan makroskopis (makro = besar). Sebaliknya, jika kita menyatakan keempat uang logam sebagai gambar atau tulisan, berarti kita menyatakan keadaan mikroskopis (mikro = kecil)… Biar paham, tataplah tabel di bawah dengan penuh kelembutan… pahami perlahan-lahan ya…

Keadaan makroskopis Keadaan mikroskopis yang mungkin (G = gambar, T = tulisan) Jumlah keadaan mikroskopis
4 gambar GGGG 1
3 gambar, 1 tulisan GGGT, GGTG, GTGG, TGGG 4
2 gambar, 2 tulisan GGTT, GTGT, TGGT, GTTG, TGTG, TTGG 6
1 gambar, 3 tulisan TTTG, TTGT, TGTT, GTTT 4
4 tulisan TTTT 1
16

Dalam sekali lemparan, terdapat 16 keadaan mikroskopis yang mungkin (Setiap uang receh mempunyai dua peluang. Empat uang receh mempunyai 16 kali peluang = 2 x 2 x 2 x 2 = 24 = 16). Peluang yang paling besar adalah muncul 2 gambar dan 2 tulisan (Terdapat 6 keadaan mikroskopis yang mungkin dari total 16 keadaan mikroskopis — 6/16 x 100 % = 37,5 %). Sebaliknya peluang yang paling kecil adalah muncul 4 gambar atau 4 tulisan (Masing-masing memiliki 1 keadaan mikroskopis yang mungkin — 1/16 x 100% = 6,25 %). Yang kita bahas ini hanya peluang alias probabilitas… Kalau kita melempar uang receh sebanyak 16 kali, belum tentu muncul 2 gambar dan 2 tulisan sebanyak 6 kali. Tapi kalau kita melempar uang receh sebanyak ribuan kali, peluang munculnya 2 gambar dan 2 tulisan bisa mendekati 37,5 %. Sebaiknya dibuktikan saja… Silahkan melempar empat uang receh seratus rupiah sebanyak 100 kali (1000 kali kalau mampu ). Catat data yang diperoleh dalam satu kali lemparan… Setelah melempar uang receh sebanyak 100 kali, dirimu akan menemukan bahwa 2 gambar dan 2 tulisan paling sering muncul. Semakin banyak jumlah lemparan, peluang munculnya 2 gambar dan 2 tulisan mendekati 37,5 % dari total jumlah lemparan.
Sebelumnya kita hanya meninjau 4 uang receh. Apabila kita menambah jumlah uang receh maka jumlah keadaan mikroskopis semakin banyak. Misalnya kita punya 100 uang receh… Dalam sekali lemparan, terdapat 2100 = 1,27 x 1030 keadaan mikroskopis yang mungkin… Peluang yang paling besar adalah muncul 50 gambar dan 50 tulisan (Terdapat 1,01 x 1029 keadaan mikroskopis yang mungkin dari total 1,27 x 1030 keadaan mikroskopis). Sebaliknya peluang yang paling kecil adalah muncul 100 gambar atau 100 tulisan (Masing-masing hanya memiliki 1 keadaan mikroskopis yang mungkin dari total 1,27 x 1030 keadaan mikroskopis). Sangat kecil dan nyaris tidak mungkin… Jika uang receh kita sebanyak 1000 keping, peluang munculnya 1000 gambar atau 1000 tulisan tentu saja semakin kecil dan semakin tidak mungkin.
Untuk menghubungkan dengan konsep entropi, kita bisa menganggap semua gambar atau semua tulisan merupakan susunan yang teratur, sedangkan separuh gambar dan separuh tulisan merupakan susunan yang tidak teratur. Semakin banyak jumlah uang receh, probabilitas atau peluang untuk mendapatkan susunan yang teratur (semua gambar atau semua tulisan) menjadi semakin kecil dan nyaris tidak mungkin… Sebaliknya susunan yang tidak teratur (separuh gambar dan separuh tulisan) memiliki probabilitas atau peluang yang jauh lebih besar. Dari hasil ini tampak bahwa ketidakteraturan berkaitan erat dengan probabilitas. Keadaan yang paling mungkin adalah keadaan yang tidak teratur, sedangkan keadaan yang nyaris tidak mungkin adalah keadaan yang teratur.
Pernyataan umum hukum kedua termodinamika yang telah kita bahas sebelumnya mengatakan bahwa entropi atau ketidakteraturan selalu bertambah pada setiap proses ireversibel. Pernyataan hukum kedua termodinamika ini bisa kita pahami sebagai pernyataan probabilitas. Artinya setiap proses yang terjadi di alam semesta adalah proses yang memiliki probabilitas atau peluang yang paling besar. Hukum kedua termodinamika tidak melarang penurunan entropi pada setiap proses ireversibel, tetapi peluangnya sangat kecil bahkan nyaris tidak mungkin terjadi. Sebaliknya bertambahnya entropi memiliki peluang yang jauh lebih besar. Jumlah uang receh yang kita tinjau sebelumnya cuma 100… dalam kenyataannya dalam satu mol saja terdapat 6,02 x 1023 molekul… ini jumlah yang sangat besar. Keadaan mikroskopis yang mungkin dari jumlah ini tentu saja sangat besar, sehingga keteraturan memiliki peluang yang sangat kecil dan nyaris tidak mungkin…
Kalau kita menjatuhkan gelas ke lantai, serpihan-serpihan gelas yang tercecer di lantai bisa saja berkumpul lagi dan membentuk gelas hingga utuh seperti semula. Tetapi peluang kejadiannya sangat kecil sehingga tidak mungkin terjadi… ketika gelas masih utuh, posisi molekul-molekul lebih teratur. Ketika gelas jatuh hingga pecah sehingga serpihan-serpihan gelas tercecer di tanah, posisi molekul menjadi tidak teratur. Peluang untuk kembali ke posisi yang teratur sangat kecil sehingga mengharapkan bahwa molekul-molekul gelas tersebut ngumpul lagi adalah sesuatu yang mustahil. Apabila kita menyentuhkan benda panas dan benda dingin, kalor akan mengalir dengan sendirinya dari benda panas menuju benda dingin… benda panas memiliki molekul-molekul yang bergerak secara acak dan cepat, sebaliknya gerakan molekul-molekul penyusun benda dingin tidak terlalu cepat. Peluang molekul-molekul yang bergerak cepat tersebut untuk numbuk temannya atau nyebrang ke benda dingin jauh lebih besar daripada peluang molekul-molekul yang gerakannya lambat… siapa cepat dia dapat kalor bisa saja berpindah dari benda dingin ke benda panas, tetapi peluang kejadiannya jauh lebih kecil. Kelereng biru dan merah pada ilustrasi di atas bisa saja kembali ke susunannya semula yang teratur. Tetapi peluang untuk kembali ke susunan yang teratur jauh lebih kecil. Susunan yang tidak teratur memiliki peluang yang jauh lebih besar. Demikian juga dengan pemuaian bebas yang dialami oleh gas dalam sebuah wadah tertutup. Wadah memiliki dua ruang, di mana kedua ruang dipisahkan oleh pembatas. Mula-mula gas berada dalam ruang sebelah kiri. Ketika pembatas dilepas, molekul-molekul gas akan berbondong-bondong nyebrang ke ruang sebelah kanan. Ruang sebelah kanan kosong, sedangkan ruang sebelah kiri berisi molekul-molekul yang sedang bergerak secara acak. Ketka pembatas di buka, molekul-molekul tersebut mempunyai peluang yang besar untuk nyebrang ke ruang kosong. Setelah molekul-molekul tersebut memenuhi seluruh volume wadah yang punya dua ruang tadi, mungkinkah semua molekul-molekul tersebut mengisi kembali ruang sebelah kiri ? bisa terjadi tetapi kemungkinannya sangat kecil. Dalam satu mol saja terdapat 6,02 x 1023 molekul… peluang yang mungkin bahwa semua molekul berada di ruang sebelah kiri adalah 1 dari jutaan kemungkinan yang ada. Satu berbanding jutaan adalah peluang sangat kecil dan nyaris mustahil…
Dari uraian panjang lebar dan bertele-tele sebelumnya, tampak bahwa hukum kedua termodinamika mengatakan kepada kita bahwa setiap proses yang terjadi di alam semesta adalah proses yang paling mungkin terjadi. Arah di mana proses di alam terjadi (menuju entropi yang tinggi) ditentukan oleh peluang atau probabilitas… ketidakteraturan memiliki probabilitas yang jauh lebih besar sehingga lebih mungkin terjadi…

Entropi = panah waktu
Entropi disebut juga sebagai panah waktu, karena bisa mengatakan kepada kita mengenai arah berjalannya waktu. Arah proses pada setiap proses alami adalah menuju ke keadaan yang tidak teratur… Apabila kita melihat kejadian yang sebaliknya, yakni keadaan tidak teratur dengan sendirinya berubah menjadi teratur, kita bisa mengatakan bahwa kejadiannya terbalik. Jika kita melihat serpihan-serpihan gelas yang tercecer di lantai ngumpul lagi dan membentuk gelas hingga utuh seperti semula, kita bisa mengatakan bahwa peristiwa tersebut terbalik. Hal tersebut tidak pernah terjadi dalam kehidupan kita setiap hari dan jika terjadi maka itu melangggar hukum kedua termodinamika. Dalam hal ini, waktu tidak pernah berjalan mundur dan ketidakteraturan tidak pernah berubah dengan sendirinya menjadi keteraturan. Hal yang paling mungkin terjadi dan selalu terjadi dalam kehidupan kita adalah keteraturan selalu bergerak menuju ketidakteraturan, waktu selalu berjalan maju, tidak mundur. Jika seorang tua berubah menjadi bayi, hal tersebut kita anggap tidak normal dan melanggar hukum kedua termodinamika. Atau tiba-tiba saja seseorang mengatakan bahwa ia datang dari tahun 2036 (Jhon Titor) adalah sesuatu yang aneh dan melanggar arah proses alami…

Referensi
Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga
Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga
Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga
Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit Erlangga
www.gurumuda.com



Baca Selengkapnya...

Besaran pokok dan turunan

Besaran merupakan segala sesuatu yang dapat diukur dan dinyatakan dengan angka, misalnya panjang, massa, waktu, luas, berat, volume, kecepatan, dll. Warna, indah, cantik, bukan merupakan besaran karena tidak dapat diukur dan dinyatakan dengan angka. Besaran dibagi menjadi dua yaitu besaran pokok dan besaran turunan


BESARAN POKOK

Besaran Pokok adalah besaran yang satuannya telah ditetapkan terlebih dahulu dan tidak diturunkan dari besaran lain. Ada tujuh besaran pokok dalam sistem Satuan Internasional yaitu Panjang, Massa, Waktu, Suhu, Kuat Arus, Jumlah molekul, Intensitas Cahaya.

Panjang adalah dimensi suatu benda yang menyatakan jarak antar ujung. Panjang dapat dibagi menjadi tinggi, yaitu jarak vertikal, serta lebar, yaitu jarak dari satu sisi ke sisi yang lain, diukur pada sudut tegak lurus terhadap panjang benda. Dalam ilmu fisika dan teknik, kata “panjang” biasanya digunakan secara sinonim dengan “jarak”, dengan simbol “l” atau “L” (singkatan dari bahasa Inggris length).

Massa adalah sifat fisika dari suatu benda, yang secara umum dapat digunakan untuk mengukur banyaknya materi yang terdapat dalam suatu benda. Massa merupakan konsep utama dalam mekanika klasik dan subyek lain yang berhubungan.

Waktu menurut Kamus Besar Bahasa Indonesia (1997) adalah seluruh rangkaian saat ketika proses, perbuatan atau keadaan berada atau berlangsung. Dalam hal ini, skala waktu merupakan interval antara dua buah keadaan/kejadian, atau bisa merupakan lama berlangsungnya suatu kejadian. Tiap masyarakat memilki pandangan yang relatif berbeda tentang waktu yang mereka jalani. Sebagai contoh: masyarakat Barat melihat waktu sebagai sebuah garis lurus (linier). Konsep garis lurus tentang waktu diikuti dengan terbentuknya konsep tentang urutan kejadian. Dengan kata lain sejarah manusia dilihat sebagai sebuah proses perjalanan dalam sebuah garis waktu sejak zaman dulu, zaman sekarang dan zaman yang akan datang. Berbeda dengan masyarakat Barat, masysrakat Hindu melihat waktu sebagai sebuah siklus yang terus berulang tanpa akhir.

Suhu menunjukkan derajat panas benda. Mudahnya, semakin tinggi suhu suatu benda, semakin panas benda tersebut. Secara mikroskopis, suhu menunjukkan energi yang dimiliki oleh suatu benda. Setiap atom dalam suatu benda masing-masing bergerak, baik itu dalam bentuk perpindahan maupun gerakan di tempat berupa getaran. Makin tingginya energi atom-atom penyusun benda, makin tinggi suhu benda tersebut.

Arus listrik adalah banyaknya muatan listrik yang mengalir tiap satuan waktu. Muatan listrik bisa mengalir melalui kabel atau penghantar listrik lainnya. Pada zaman dulu, Arus konvensional didefinisikan sebagai aliran muatan positif, sekalipun kita sekarang tahu bahwa arus listrik itu dihasilkan dari aliran elektron yang bermuatan negatif ke arah yang sebaliknya.

Jumlah molekul

Intensitas Cahaya

BESARAN TURUNAN

Besaran turunan adalah besaran yang satuannya diturunkan dari besaran pokok atau besaran yang didapat dari penggabungan besaran-besaran pokok. Contoh besaran turunan adalah Berat, Luas, Volume, Kecepatan, Percepatan, Massa Jenis, Berat jenis, Gaya, Usaha, Daya, Tekanan, Energi Kinetik, Energi Potensial, Momentum, Impuls, Momen inersia, dll. Dalam fisika, selain tujuh besaran pokok yang disebutkan di atas, lainnya merupakan besaran turunan. Besaran Turunan selengkapnya akan dipelajari pada masing-masing pokok bahasan dalam pelajaran fisika.

Untuk lebih memperjelas pengertian besaran turunan, perhatikan beberapa besaran turunan yang satuannya diturunkan dari satuan besaran pokok berikut ini.

Luas = panjang x lebar

= besaran panjang x besaran panjang

= m x m

= m2

Volume = panjang x lebar x tinggi

= besaran panjang x besaran panjang x besaran Panjang

= m x m x m

= m3

Kecepatan = jarak / waktu

= besaran panjang / besaran waktu

= m / s



Baca Selengkapnya...